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Abstract

Hydrodynamic loads acting on a floating flared body, which starts suddenly to move, are investigated by using both

asymptotic and numerical methods. The initial stage of the body motion is of main concern in this paper. Analysis is

performed within the approximation of two-dimensional potential flow of an ideal and incompressible liquid with

negligible surface tension effects. Initially the body is in contact with liquid, the liquid free surface is horizontal and the

body displacement during the initial stage is assumed prescribed as a function of time. The body is symmetric with

respect to the vertical axis and can move only in the vertical direction. Initial asymptotics of the hydrodynamic loads

acting on the moving body are derived. Nondimensional body displacement plays the role of the small parameter of the

problem. It is shown that the force asymptotics are strongly dependent on the flow details close to the intersection

points between the body surface and the liquid free boundary. In particular, the standard small time expansion

procedure, which provides correct initial asymptotics of loads in the case of a fully submerged body, is not applicable to

the problem of a partly submerged (floating) body. This is because, for floating bodies, noninteger powers of body

displacement appear in the initial asymptotics of the loads. For bodies with deadrise angles at the water level smaller

than 45�, negative powers have been discovered in the initial asymptotics. Fully nonlinear unsteady numerical

simulations are carried out for a floating wedge, which starts suddenly to penetrate the water. A careful verification of

the numerical results is performed aimed at identifying the initial part of the time history of the hydrodynamic loads

which, due to the simplifying assumptions of the numerical approach, is not reliable. Asymptotic analysis is used for

interpretation of the numerical results. A fairly good agreement between the theoretical and numerical predictions of

the hydrodynamic loads just after the impact has been found. A practical method to derive the initial hydrodynamic

loads, by using the results of direct numerical simulations of the floating body impact, is suggested.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The initial stage of two-dimensional liquid flow caused by a sudden vertical motion of a body initially floating on a

still liquid surface is considered. The body is assumed symmetric with respect to its vertical axis and flared. The angle
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between the tangent to the body contour at the water line and the initially horizontal free surface is denoted by g, where
gop=2 (see Fig. 1). The hydrodynamic loads during the early stage are of primary interest in the present analysis.

Hydrodynamic loads generated after sudden motions of bodies in water have received considerable attention. By

using a small time expansion procedure, Tyvand and Miloh (1995) obtained the initial asymptotics of the loads acting

on a circular cylinder. Fully nonlinear calculations of the free-surface deformations of the initially calm water caused by

forced constant velocity motion of a totally submerged circular cylinder were performed in Moyo (1996) and compared

with the small-time asymptotics obtained in Tyvand and Miloh (1995). The asymptotic results which are taken to third

order, when the gravity terms first appear in the expansion, were found to be in excellent agreement with the numerical

calculations for small times. Faltinsen (1977) and Vinje and Brevig (1980) evaluated numerically the hydrodynamic

loads generated by the sudden vertical motion of a floating body. However, due to different ways adopted to describe

the very early stage, significantly different results were obtained (see discussion in Vinje, 1994). With the aim of getting

deeper insights into the flow generated by a floating body, Korobkin and Wu (2002) derived the initial solution

generated by a sudden motion of a circular cylinder initially half-submerged into the liquid at rest. The sudden vertical

motion of a flared body is even more complicated by the fact that in this case the first-order solution is already singular

about the intersection point. The floating wedge impact problem has been investigated in Iafrati and Korobkin (2004)

where the inner solution was derived through a suitable set of stretched variables.

In the present paper, the small time asymptotics of hydrodynamic loads acting on a floating flared body during the

early stage after its sudden start is derived. The analysis is carried out by assuming the fluid to be ideal and

incompressible, with negligible surface tension effects. Although compressibility of the liquid is disregarded in the

present study, it is worth remarking that for floating bodies it matters only during a very short stage just after the

impact instant (Korobkin and Pukhnachov, 1988). Duration of the compressibility stage is of the order of OðL=c0Þ

where L is the length scale of the body and c0 is the sound speed in the resting liquid. It is convenient to take L=V0 as

the time scale of the process, where V0 is the initial velocity of the body. In terms of the nondimensional time the

duration of the compressible stage is of the order of OðMÞ, where M is the Mach number, M ¼ V0=c0. In many

practical situations the impact velocity V0 is much smaller than c0, which indicates that the compressibility stage is of

very short duration. In this study we are concerned with the initial stage, when M5t51; this is with the incompressible

stage, which lasts much longer than the compressible one but still short enough so that the body displacement during

this stage is very small compared with the characteristic body dimension L. If compressibility effects are not taken into

account, one is forced to deal with flow velocities which change instantly at t ¼ 0 from zero to finite values, that is to

deal with infinite accelerations and, correspondingly, with infinite hydrodynamic loads.

During the initial stage under consideration, the liquid flow is assumed potential. The velocity potential is obtained

by using the method of matched asymptotic expansions. It is well known that the leading term of the flow velocity just

after the impact is given by the pressure-impulse approach and has a singularity at the intersection points between the

liquid free surface and the body contour. This is why an inner solution near the intersection points has to be derived and

matched with the outer one. It should be noticed that the inner solution will give a contribution to the higher-order

terms of the outer solution, modifying both the flow and the pressure distribution in the main flow region. The latter

effect, which is a feedback of the flow near the water level to the flow in the main region, is of strong importance in the

problem of flared body impact. It is shown that terms with non-integer power of body displacement, which are related

to the eigensolutions of the inner problem, have to be included in the small time expansion of the outer pressure

distribution. These non-integer powers are dependent on the deadrise angle g at the water line and, for angles smaller

than 45�, negative powers appear which are responsible for high hydrodynamic loads just after impact. Note that the

pressure details in the inner region also provide their own contribution to the total hydrodynamic load on the moving

body. The order of this contribution is estimated in this paper.
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Fig. 1. Sketches of the body and free surface configurations at t ¼ 0 (a) and t40 (b).
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It should be noted that the present analysis is not valid for floating bodies with small deadrise angles, when the wetted

area increases at a very high rate during the sudden vertical displacement of the body. The case of a floating wedge

impact with small deadrise angle was studied in Oliver (2002) within the Wagner approach. The problem of very thin

floating body impact corresponds, in the leading order, to the impact of a vertical plate. The initial asymptotic solution

for the latter problem was given in King and Needham (1994). Neither the cases of small or large deadrise angles are

considered in this paper.

In order to confirm the theoretical findings, a fully nonlinear unsteady numerical solver (Iafrati et al., 2000) is

adopted to simulate the water entry of a two-dimensional wedge, partly submerged at t ¼ 0, and to evaluate the

resulting hydrodynamic loads. The model is based on a mixed Eulerian–Lagrangian formulation. The normal derivative

of the velocity potential is assigned along the rigid body surface whereas the velocity potential on the free surface is

obtained by integration in time of the unsteady Bernoulli equation. Hence, at each time step, the velocity potential is

given in terms of a boundary integral representation and a boundary element approach is used to derive the velocity

potential along the body contour and its normal derivative along the free surface.

As soon as the body starts to penetrate into the liquid, a jet develops about the intersection between the free surface

and the body contour. Depending on the deadrise angle, the jet can become very thin, thus making its description very

challenging. Although sophisticated methods have been recently developed to describe the flow inside the thin liquid

layer (Battistin and Iafrati, 2004), even simple models (Zhao and Faltinsen, 1993; Battistin and Iafrati, 2003) provide

accurate prediction of the total hydrodynamic load, since the pressure along the body portion in contact with the thin

jet layer is very close to zero.

Independently of the model adopted to describe the flow in the thin jet layer, due to initial mismatch of the boundary

conditions at the intersection point, an initial time interval exists during which hydrodynamic loads provided by

numerical simulations are meaningless (Iafrati et al., 2000; Battistin and Iafrati, 2003). In the present work, numerical

simulations with highly refined panel size are done in order to clearly identify the time stage where the predicted

hydrodynamic loads are reliable. Then, the time history of the hydrodynamic load is interpolated by using the leading

terms of the asymptotic behaviour theoretically derived. The rather good agreement found between the interpolated

curve and the original numerical data proves the validity of the theoretical findings. For deadrise angles larger than 45�,

the constant term of the time series theoretically derived agrees satisfactorily with the value provided by the

interpolation of the numerical results.

The methodology adopted in this analysis is discussed in more detail in Section 8 with the aim of deriving a practical

tool to correct numerical predictions of the hydrodynamic loads at the early stage of floating body motion.
2. Formulation of the problem

The unsteady two-dimensional flow generated by impulsive vertical motion of a body initially floating on a liquid free

surface is considered. The liquid is at rest and its free surface is horizontal before the body starts to move. The body is

assumed symmetric with respect to its vertical axis and flared. The angle between the tangent to the body surface at the

water line and the initially horizontal liquid surface is denoted by g, gop
2
(see Fig. 1(a)). The body width at the water

level is 2L.

At some instant of time, which is taken as the initial one, the body suddenly starts to penetrate the liquid with an

initial velocity V0. We take L and V0 as length scale and velocity scale, respectively. Nondimensional variables are

used below, with the ratio L=V0 being the time scale of the process. The vertical displacement of the body is hðtÞ,

where hð0Þ ¼ 0 and _hð0Þ ¼ 1, and an overdot stands for the time derivative. In the present analysis the function hðtÞ is

assumed given.

On the basis of the aforementioned assumptions, the irrotational flow caused by the impact is described by the

complex velocity potential wðz; tÞ ¼ jðx; y; tÞ þ icðx; y; tÞ, where z ¼ xþ iy, jðx; y; tÞ is the velocity potential and

cðx; y; tÞ is the stream function. The complex potential wðz; tÞ is an analytical function in the flow region OðtÞ, decays at
infinity, x2 þ y2 !1, and satisfies the following boundary conditions

c ¼ _hðtÞx ðy ¼ f ðxÞ � hðtÞÞ, (1)

jt þ
1
2
jrjj2 þ Fr�2Z ¼ 0; jy ¼ Zxjx þ Zt ðy ¼ Zðx; tÞÞ, (2)

where equation y ¼ f ðxÞ describes the shape of the floating body, f ð�xÞ ¼ f ðxÞ, f ð1Þ ¼ 0, f 0ð1Þ ¼ tan g, the function f ðxÞ

is smooth where x40. The Froude number in (2) is given as Fr ¼ V0=
ffiffiffiffiffiffi
gL
p

, where g is the gravitational acceleration.
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Equation y ¼ Zðx; tÞ describes the elevation of the liquid free surface (the function Zðx; tÞ can be multi-valued) and

Zð�x; tÞ ¼ Zðx; tÞ, Zðx; 0Þ ¼ 0 where jxj41 and Zðx; tÞ ! 0 as jxj ! 1.

Once the velocity potential jðx; y; tÞ has been obtained, the hydrodynamic pressure pðx; y; tÞ is calculated as

pðx; y; tÞ ¼ �jt �
1
2
jrjj2 � Fr�2y, (3)

with the pressure scale being R0V2
0, where R0 is the liquid density. The vertical force F ðtÞ acting on the moving body is

given as

F ðtÞ ¼

Z
WSðtÞ

p½x; f ðxÞ � hðtÞ; t�dx, (4)

where WSðtÞ is the wetted part of the body surface. The force scale is R0V2
0L. We shall determine the asymptotic

behaviour of both the complex potential wðz; tÞ, z ¼ xþ iy, and the hydrodynamic force F ðtÞ as t! 0 up to the terms of

the orders oðtÞ and oð1Þ, respectively. Here oð1Þ designates the terms which tend to zero and oðtÞ the terms which tend to

zero faster than t as t! 0.
3. Small time solution

The solution of the problem is sought in the form

wðz; tÞ ¼ _hðtÞw0ðzÞ þ w1ðz; tÞ þ oðtÞ, (5)

where the first term corresponds to the pressure-impulse solution and the second term describes the evolution of the

flow after the impact, w1ðz; tÞ ! 0 as t! 0. According to the pressure-impulse theory, the potential w0ðzÞ is an

analytical and bounded function in Oð0Þ, decays at infinity and satisfies the boundary conditions

I½w0� ¼ x ðy ¼ f ðxÞ; jxjo1Þ; R½w0� ¼ 0 ðy ¼ 0; jxj41Þ. (6)

The complex potential w0ðzÞ can be readily obtained once the conformal mapping z ¼ GðzÞ, z ¼ xþ io, of the lower

half-plane oo0 onto the domain Oð0Þ is known. The conformal mapping is specified by the conditions Gð�1� i0Þ ¼

�1 (see Fig. 2). The interval jxjo1, o ¼ 0 corresponds to the submerged part of the body contour and the rest of the

real axis to the liquid free surface. Far from the body surface, jzj ! 1, the mapping behaves as

GðzÞ ¼ G1zþ G0=zþ Oðz�3Þ, where G1 and G0 are real constants.

The analytic function W 0ðzÞ ¼ w0½GðzÞ� satisfies the boundary conditions

I½W 0� ¼ xðx; 0Þ ðo ¼ 0; jxjo1Þ; R½W 0� ¼ 0 ðo ¼ 0; jxj41Þ, (7)

where xðx;oÞ ¼ R½GðzÞ�, and is given as

W 0ðzÞ ¼ i GðzÞ � G1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

q� �
. (8)

The velocity potential j0ðx; yÞ ¼ R½w0ðzÞ� on the body surface, y ¼ f ðxÞ, is given in parametric form

j0ðx; f ðxÞÞ ¼ �f ðxÞ � G1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
; x ¼ xðx; 0Þ ðjxjo1Þ. (9)
y=f (x)

ζ=ξ+iωz=G(ζ )

y

xAA′

B
z=x+iy

ABA′
-1 1

ω

ξ

Fig. 2. Sketch of the body contour in the physical (z) and transformed ðzÞ planes.
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In the problem of floating plate impact, where f ðxÞ � 0, jxjo1, we obtain GðzÞ ¼ z and Eq. (9) takes the form

j0ðx; 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

ðjxjo1Þ,

which is a well-known formula in the Wagner theory of impact.

The boundary-value problem for the second term in (5) can be obtained by substituting the small time expansion (5)

into the body boundary condition (1) and the dynamic boundary condition (2) and omitting the terms of the orders oðtÞ

and oð1Þ, respectively. It should be noticed that the kinematic boundary condition (2) and decomposition (5) yield

Zðx; tÞ ¼ hðtÞZ0ðxÞ þ Z1ðx; tÞ þ oðt2Þ. (10)

The boundary conditions for the analytic function w1ðz; tÞ ¼ j1ðx; y; tÞ þ ic1ðx; y; tÞ are imposed on the initial position

of the body surface and that of the liquid free surface. We obtain

c1 ¼ h _hj0x þ oðtÞ ðy ¼ f ðxÞ; jxjo1Þ, (11)

j1t ¼ �
1
2
_h
2
ðj0yÞ

2
þ oð1Þ ðy ¼ 0; jxj41Þ. (12)

Special forms of the boundary conditions (11) and (12), decomposition (5) and asymptotic formula hðtÞ €hðtÞ ¼ oð1Þ show that

w1ðz; tÞ ¼ h _h ~w1ðz; tÞ, (13)

where the analytic function ~w1ðz; tÞ is defined in Oð0Þ, decays at infinity and satisfies the boundary conditions

~c1 ¼ j0x ðy ¼ f ðxÞ; jxjo1Þ; ~j1 ¼ �
1
2
ðj0yÞ

2
ðy ¼ 0; jxj41Þ. (14)

Note that the analytic function ½w00ðzÞ�
2 is equal to �ðj0yÞ

2
ðx; 0Þ on the free surface, jxj41. This observation allows us to

decompose the unknown function ~w1ðz; tÞ as

~w1ðz; tÞ ¼ 1
2

w00ðzÞ
� �2

þ ŵ1ðz; tÞ, (15)

where the new analytic function ŵ1ðz; tÞ satisfies the boundary conditions

I½ŵ1� ¼ j0x 1þ j0y

h i
ðy ¼ f ðxÞ; jxjo1Þ; R½ŵ1� ¼ 0 ðy ¼ 0; jxj41Þ. (16)

In the problem of floating plate impact, where j0y ¼ �1 on the plate, conditions (16) are homogeneous and ŵ1ðzÞ is given as

a superposition of eigenfunctions

ŵ1ðz; tÞ ¼ i
XNe

n¼0

CnðtÞ½z2 � 1��
2nþ1
2 ; z ¼ GðzÞ, (17)

where CnðtÞ are real functions which should be determined together with the number of the eigenfunctions Ne taken into

account by using the condition of matching the outer solution (5) with the inner solutions in a small vicinities of the

intersection points, x ¼ �1, y ¼ 0. In the following only the leading order terms of the outer and inner solutions are

matched, this is why it will be enough to take Ne ¼ 0 in (17).

By using Eqs. (7) and (9), we obtain

j0x½1þ j0y� ¼
G2
1f xðxÞ

½1þ f 2
xðxÞ�

2

x2

ð1� x2Þ½xxðx; 0Þ�2
; x ¼ xðx; 0Þ (18)

for an arbitrary symmetric body. The function j0x½1þ j0y�ðx; 0Þ, where jxjo1, is denoted below by uðxÞ. Note that

uðxÞ ¼ j2
0xðx; 0Þf x½xðx; 0Þ�. For a wedge the calculations provide

uðxÞ ¼ 1
2
sinð2gÞsgnðxÞjxj2�4g=pð1� x2Þ2g=p�1, (19)

where �1o2g=p� 1o0 and 0o2� 4g=po2. The function uðxÞ is integrable.
For an arbitrary symmetric body the unknown function ŵ1ðz; tÞ is equal to the sum of the particular solution

ŵ1PðzÞ ¼
i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

uðtÞdt
t� z

; z ¼ GðzÞ (20)

and the eigensolution (17).

The pressure-impulse solution (5) and (8) provides a singular velocity field at the intersection points x ¼ �1, y ¼ 0.

Moreover, the complex potential w1ðz; tÞ in (5) is singular itself. Therefore, the obtained solution has to be considered as

the outer solution. The inner solution, which is used here to resolve this singularity, is derived in Section 5. In order to
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formulate the matching conditions, the behaviour of the outer solution close to the intersection points has to be

analyzed.
4. Outer solution near the intersection points

Near the right-hand side intersection point, z ¼ 1, the conformal mapping behaves as

z� 1 ¼ G1ðz� 1Þb=p þ G2ðz� 1Þ2b=p þ O½ðz� 1Þb=pþ1�. (21)

The coefficient G1 is dependent on the body shape,

G1 ¼ lim
z!1

GðzÞ � 1

ðz� 1Þb=p
,

b ¼ p� g and the coefficient G2 accounts for the effect of the body curvature close to the intersection point,

G2 ¼ f 00ð1ÞG2
1 cos

3g=½2 sin g�. Inverting asymptotic formula (21), we find

z� 1 ¼
z� 1

G1

� �2s0
1� 2s0

G2

G2
1

ðz� 1Þ þ O½jz� 1j2s0 �

( )
; s0 ¼

p
2b

. (22)

In order to obtain the asymptotic formula for ŵ1PðzÞ as z! 1, we decompose the product
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

uðtÞ in the integral

(20) as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

uðtÞ ¼ S1ð1� tÞk þUðtÞ; k ¼
2

p
g�

p
4

� �
; S1 ¼

1ffiffiffi
2
p

pG1ffiffiffi
2
p

bG1

� 	2

sinð2gÞ,

where UðtÞ ¼ O½ð1� tÞðg=pÞþð1=2Þ� as t! 1� 0, and calculateZ 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

uðtÞdt
t� z

¼ S1

Z 1

�1

ð1� tÞk dt
t� z

þU1 þ O½ð1� zÞ
g
pþ

1
2�; U1 ¼

Z 1

�1

UðtÞdt
t� 1

ðz! 1Þ. (23)

Here Z 1

�1

ð1� tÞk dt
t� z

¼ �
2k

k
�

p
cosð2gÞ

z� 1

G1

� �3s0�2
þ O½jz� 1j3s0�1� go

p
4

� �
,

¼ �
2k

k
�

p
cosð2gÞ

z� 1

G1

� �3s0�2
þ O½jz� 1j2s0 � g4

p
4

� �
,

¼ � ln 2þ 2s0 ln
z� 1

G1

� �
þ O½jz� 1j2s0 � g ¼

p
4

� �
.

By substituting (22) into Eq. (5) and using formulae (8), (15), (17), (20) and (23), we find for ga p
4

wðz; tÞ ¼ i _hðtÞ½1� Aðz� 1Þs0 þ Oðjz� 1jHÞ þ h _h �
A2s20

2 cosð2gÞ
expð2igÞðz� 1Þ2s0�2

�

þAs0ðz� 1Þs0�1 þ im2ðz� 1Þ�s0 �
1

2
þ oð1Þ

�
þ oðtÞ, ð24Þ

where

A ¼

ffiffiffi
2
p

G1

Gs0
1

; m2 ¼
1ffiffiffi
2
p C0ðtÞ þ

U1

p
�

2kS1

pk

� �
Gs0

1 .

By taking the real part of asymptotic formula (24) in the local coordinates, z ¼ 1þ r exp½iðy� bÞ�, where r51, y ¼ 0 on

the body surface and y ¼ b on the free surface, we obtain the asymptotic expansion of the outer velocity potential close

to the intersection point in the form

jðx; y; tÞ ¼ � _hðtÞArs0 cosðs0yÞ þ OðrÞ þ h _h
1

2
A2s20r2s0�2

cos½ð2s0 � 2Þy�
cosð2gÞ

�

þAs0rs0�1 sin½ðs0 � 1Þyþ b� � m2r�s0 cosðs0yÞ �
1

2
þ oð1Þ

�
þ oðtÞ. ð25Þ
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It should be noticed that the curvature of the body surface near the intersection points does not contribute to the

derived asymptotics. The curvature contributes to the higher-order terms. The obtained asymptotic behaviour depends

on the local deadrise angle. The only quantity in the asymptotics which is dependent on the global shape of the body, is

the integral U1 in (23).

It is seen that the outer solution predicts unbounded velocity of the flow close to the intersection points. The higher the order

of the outer asymptotics, the higher is the singularity of the solution. The inner solution is required to improve the prediction of

the flow pattern close to the intersection points and to derive an equation for the coefficient C0ðtÞ of the eigensolution. The

latter equation is of major importance to evaluate the initial asymptotics of the hydrodynamic force acting on the body. In

the following section the first-order inner solution is obtained and matched to the first-order outer solution. An equation for

the coefficient C0ðtÞ is derived by matching the first-order inner solution with the second-order outer solution.
5. Inner solution about the intersection point

The vicinity of the right-hand side intersection point, x ¼ 1, y ¼ 0, is considered. The inner variables are introduced

as (Fig. 3)

x ¼ 1þ aðtÞl; y ¼ aðtÞm; r ¼ aðtÞr; Zðx; tÞ ¼ aðtÞHðl; tÞ; j ¼ _hAas0jiðl; m; tÞ; p ¼ _h
2
a2s0�2A2piðl; m; tÞ.

(26)

The function aðtÞ, which defines the dimension of the inner region, is obtained from the condition of balance between

linear and nonlinear terms in the inner solution

aðtÞ ¼ ½ð2� s0ÞAhðtÞ�
1

2�s0 .

The inner pressure piðl; m; tÞ is given as

pi ¼ ljil þ mjim � s0ji �
1
2
jrjij

2 þ Oðh €hÞ. (27)

By using Eqs. (1) and (2), the boundary-value problem for the inner velocity potential is obtained in the form

Dji ¼ 0 ðin OiÞ,

ljil þ mjim � s0 þ 1
2
jrjij

2 ¼ Oðh €hÞ ðm ¼ Hðl; tÞÞ,

jim ¼ Hljil þH � lHl þ OðhÞ ðm ¼ Hðl; tÞÞ,

qji

qn
¼ Oðh

1�s0
2�s0 Þ ðm ¼ l tan gÞ,

ji�� rs0 cosðs0yÞ ðr!1Þ. ð28Þ

Eqs. (28) imply that in the leading order as t! 0 the inner flow is nonlinear and self-similar.

The boundary-value problem (28) is identical to that studied by Iafrati and Korobkin (2004) for the floating wedge

case. In particular, in that analysis the asymptotic behaviour of the inner velocity potential in the far field, r!1, was

recovered as

jiðr; yÞ ¼ �r
s0 cosðs0yÞ þ CEr�s0 cosðs0yÞ þ

s20
2� s0

cos½2ð1� s0Þy�
2 cosð2gÞ

r2ðs0�1Þ þ oðr2ðs0�1ÞÞ þ Oðh
1�s0
2�s0 Þ, (29)
a (t) ρ

Fig. 3. Definition of the inner region.



ARTICLE IN PRESS
A.A. Korobkin, A. Iafrati / Journal of Fluids and Structures 21 (2005) 413–427420
where ga p
4
. The case g ¼ p=4 was studied in Iafrati and Korobkin (2002). The second term in (29) with the coefficient

CE represents the eigensolution of the inner problem (28) in the far field. This term is of higher order than the third

term in (29) for g4p=4. Therefore, for a deadrise angle greater than 45� the second term has to be removed from

the asymptotic formula (29). If 0ogo p
4 this term gives an important contribution to the far-field asymptotics and the

coefficient CE should be evaluated numerically together with the solution of the boundary-value problem (28). Note

that in the case p=4ogop=2 the coefficient CE of the second term in (29) can also be evaluated numerically; however,

due to the high order of this term, the calculations were found to be unreliable.

The asymptotics (25) and (29) have to match each other up to the designated higher order terms. By substituting

r ¼ aðtÞr into Eq. (25) and dividing the result by scale factor _hAas0 , we obtain

jð1þ aðtÞl; aðtÞm; tÞ
_hAas0

¼ �rs0 cosðs0yÞ þ
s20

2� s0

cos½2ð1� s0Þy�
2 cosð2gÞ

r2ðs0�1Þ � ~m2hwr�s0 cosðs0yÞ þ Oðh
2�2s0
2�s0 Þ, (30)

where

~m2 ¼ m2A
�

2þs0
2�s0 ð2� s0Þ

�
2s0
2�s0 ; w ¼

2� 3s0
2� s0

.

Note that wo2�2s0
2�s0

for any value of s0, 1
2
os0o1.

The right-hand sides in (29) and (30) should be equal and therefore the matching condition provides

~m2 ¼ �CEh�w 0ogo
p
4

� �
, (31)

from which the formula for the coefficient C0 in (17) is derived as

C0 ¼ � ~CEh
3s0�2
2�s0 þ

2kS1

pk
�

U1

p
; ~CE ¼

ffiffiffi
2
p

CEG�s01 A
2þs0
2�s0 ð2� s0Þ

2s0
2�s0 0ogo

p
4

� �
. (32)

For larger deadrise angles, p=4ogop=2, Eq. (32), formally speaking, can also be used. However, the coefficient CE in

(29) for p=4ogop=2 is rather difficult to evaluate numerically as the eigensolution in this case is of higher order.
6. Asymptotics of the hydrodynamic force on the moving body

Eqs. (3), (5), (13) and (15) provide as t! 0 that outside of small vicinities of the intersection points the pressure along

the surface of the moving body is given by

pðx; f ðxÞ � hðtÞ; tÞ ¼ � €hj0ðx; f ðxÞÞ � _h
2
½j2

0xðx; f ðxÞÞ þ ĵ1ðx; f ðxÞ; tÞ� � h _hĵ1tðx; f ðxÞ; tÞ � Fr�2yþ oð1Þ, (33)

where ĵ1ðx; f ðxÞ; tÞ is presented in the parametric form as

ĵ1ðx; f ðxÞ; tÞ ¼ �
C0ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p �
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p --
Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

uðtÞdt
t� x

; x ¼ xðx; 0Þ ðjxjo1Þ.

Note that even if the inner pressure is very high compared with the pressure in the outer region, the contribution

of the inner pressure to the hydrodynamic force after the impact tends to zero as t! 0. This contribution is of the

order OðpaÞ, where the order of the hydrodynamic pressure in the inner region is defined in (26), thus

OðpaÞ ¼ Oð _h
2
a2s0�1A2Þ ¼ Oð _h

2
hð2s0�1Þ=ð2�s0ÞÞ ¼ oð1Þ. We may conclude that the contribution FinðtÞ of the inner pressure

to the hydrodynamic force in the leading order is

FinðtÞ ¼ C1
_h
2
h
2s0�1
2�s0 ð1þ oð1ÞÞ, (34)

where the constant factor C1 should be calculated by integrating the inner pressure in small vicinities of the intersection

points. Therefore, up to the terms which tend to zero as t! 0, the initial asymptotics of the hydrodynamic force are

determined by the pressure distribution in the outer region. From the asymptotic behaviour of j0 and ĵ1 the outer

pressure about the intersection point follows as

p� _h
2
m2r�s0 � A2s20

cos2 g
cosð2gÞ

r2s0�2
� �

þ _hh _m2r�s0 þ oð1Þ ðr! 0Þ,
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where r is the distance from the intersection point along the body contour. By using Eqs. (32), we finally get

p� _h
2 2s0
2� s0

m2r�s0 � A2s20
cos2 g
cosð2gÞ

r2s0�2
� �

þ oð1Þ ðr! 0Þ,

which shows that the outer pressure field is singular about the intersection point, although the singularity is integrable.

It is worth noticing that, in the latter asymptotic formula, both the distance r and the time t are small. Close to the

intersection point it is reasonable to consider this pressure asymptotic expression within the inner variables, where

r ¼ aðtÞr, aðtÞ51, rb1 and raðtÞ51. By using (31), we obtain the behaviour of the outer pressure as

p� _h
2
a2s0�2A2 �2s0CEr�s0 � s20

cos2 g
cosð2gÞ

r2s0�2
� �

ðrb1Þ.

For p=4ogop=2, we find 2s0 � 24� s0, so that the second term in the asymptotic formula provides the main

contribution to the pressure, where cosð2gÞo0. This implies that the pressure grows when approaching the intersection

point from the outer region. The same is true for 0ogop=4. Indeed, in this case 2s0 � 2o� s0 and the first term

provides the main contribution. This contribution is positive because CEo0, as was shown by Iafrati and Korobkin

(2004).

By substituting (33) and (34) into Eq. (4), we obtain the dynamic component of the force as

F ðtÞ ¼ €hMa �
_h
2
G1½G1E � pC0ðtÞ� þ h _hpG1 _C0ðtÞ þ C1

_h
2
h
2s0�1
2�s0 þ oð1Þ (35)

with

E ¼

Z 1

�1

t2 dt

ð1� t2Þxxðt; 0Þ½1þ f 2
x�
; Ma ¼ pG1ðG0 þ G1=2Þ � Sw,

where Ma is the added mass of the body, Sw is the area of the submerged part of the body and, from Eqs. (32),

_C0ðtÞ ¼ �
3s0 � 2

2� s0

� 	
~CE
_hh

4ðs0�1Þ
2�s0 .

Eq. (35) indicates than the two terms in Eq. (35) containing C0ðtÞ and _C0ðtÞ are of the same order in h, which is

Oðhð3s0�2Þ=ð2�s0ÞÞ.

The first term in (35) represents the well-known result of pressure-impulse theory. The hydrodynamic force acting on

a body, which starts to move, is equal to the product of the body added mass Ma and the body acceleration €h during the

impact. If the body moves after its impulsive start with a constant velocity, _h ¼ 1, when t40, the first term in (35) is

equal to MadðtÞ, where dðtÞ is the Dirac delta-function, and gives no contribution to the force for t40. Hence, in this

case the asymptotics of the hydrodynamic force take the form

F ðtÞ ¼ �G1 G1E � p
2kS1

pk
�

U1

p

� 	� �
� pG1 ~CE

2s0
2� s0

t
3s0�2
2�s0 þ C1t

2s0�1
2�s0 þ oð1Þ. (36)

Eq. (36) highlights the important role played by the eigensolution of the inner problem, the coefficient of which

explicitly appears in the first time-dependent term. Note that the correction term with C1 related to the inner pressure

field has been introduced in (35) and (36) even though this term is of higher order than other displayed terms.

With the aim of establishing a comparison between the theoretical findings and numerical results, Eq. (36) is

specialized for a floating wedge, which starts suddenly to move down at a constant velocity, _h ¼ 1. For a wedge,

we have

E ¼
p� 2g
tan g

; G1 ¼
1

w cos g
; w ¼

1ffiffiffi
p
p G

1

2
þ

g
p

� 	
G 1�

g
p

� �
and

2kS1

pk
�

U1

p

� 	
¼

sinð2gÞ
2p

G 3
2
� k


 �
GðkÞ

G 3
2


 � .

We do not evaluate the coefficient C1 in the present analysis. The constant ~CE is given in Eq. (32) where, for the wedge

case,

G1 ¼ 2 1�g
pð Þs0G1.
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In the asymptotic expression (36) of the hydrodynamic force three terms can be recognized. In addition to the time

independent part

F0 ¼ �G1 G1E � p
2kS1

pk
�

U1

p

� 	� �
, (37)

two time-dependent terms F1ðtÞ and F2ðtÞ, which originate from the inner solution and its matching with the outer

solution, appear

F1ðtÞ ¼ C1t
2s0�1
2�s0 ; F2ðtÞ ¼ �pG1

2s0
2� s0

~CEt
3s0�2
2�s0 . (38)

While F1ðtÞ always tends to zero as t! 0, the term F2ðtÞ has the power ð3s0 � 2Þ=ð2� s0Þ, which is negative as gop=4.
As a result, while the hydrodynamic force starts at t ¼ 0 from the finite value F0 for g4p=4, for smaller deadrise angles

the term F2ðtÞ is responsible for unbounded loads as t! 0. With the aim of clarifying the last statement, it is worth

noticing that the unbounded loads as t! 0 are caused by the eigensolution term appearing in the inner velocity

potential. The power of the eigensolution term is negative for gop=4. This means that the hydrodynamic force is

unbounded as time tends to zero because the pressure given by Eq. (33) diverges due to the behaviour of both f̂1 and

hf̂1t as t! 0. In the case g ¼ p=4, the form of the inner solution is significantly different from that found for gap=4
and also the matching procedure differs. Analysis of this case is more sophisticated than that presented in this paper [for

details of the analysis see Iafrati and Korobkin, 2002].
7. Numerical modelling

The analysis presented above provides important insights on the hydrodynamic loads acting on the surface of the

entering body. However, the hydrodynamic loads can also be evaluated with the help of unsteady fully nonlinear

numerical approaches. Nowadays such kinds of tool are becoming more and more accurate and reliable and their

flexibility is making them widely adopted. Nevertheless, some problems still exist which cannot be treated satisfactorily

with the commonly adopted approaches. The early stage after the sudden start of a floating body is one of them.

In order to explain reasons that make this problem difficult to handle by using classical numerical approaches, a brief

discussion of their basic principles is worthwhile. Most of the fully nonlinear numerical approaches are based on the

mixed Eulerian–Lagrangian formulation, originally proposed by LonguetHiggings and Cokelet (1976). At each time

step the flow velocity potential is found by solving a boundary problem with a Dirichlet condition imposed on the free

surface and a Neumann condition assigned along the solid boundaries. From the solution of this boundary value

problem, usually achieved through panel methods, the velocity potential along the body contour and its normal

derivative along the free surface are derived, thus making it possible to evaluate the velocity components on the free

surface. Then the free surface is advanced in time by integrating the velocity field to get the new free surface position

and the unsteady Bernoulli equation is used to get the velocity potential along it.

The difficulties that this approach encounters when simulating the water entry of an initially floating flared body can

be easily understood by looking at the sketch shown in Fig. 4, where the discretization about the initial configuration is

shown near the intersection point. The boundary condition enforced on the solid boundary, qj=qn ¼ cos g, and on the

free surface, j ¼ 0, do not match each other at the intersection point, giving rise to the flow singularity discussed in

Section 2, and leading to the development of a thin jet. During the early stage after the body start, numerical

simulations are not able to describe this singularity and the predicted hydrodynamic loads are not reliable. Later on, the

jet develops, removing the flow singularity and thus making the hydrodynamic loads reliable (Iafrati et al., 2000;

Battistin and Iafrati, 2003).

Owing to the limitations of boundary element approaches when describing the flow inside thin jets, rather simplified

models are often adopted which cut the thin jet off the computational domain (Zhao and Faltinsen, 1993). Although
ϕn=cosγ

ϕ=0

Fig. 4. Sketch of the discretization adopted about the intersection point. The mismatch of the boundary conditions is responsible for

the jet development.
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Fig. 5. History of the hydrodynamic loads for a floating wedge with g ¼ 60�. On (b) diamonds denote the lower limit of reliability of

the time histories. Key: A0=h0 ¼ 0:018042725 (solid), 0.009021363 (dash), 0.004510681 (dash-dot).
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Fig. 6. History of the hydrodynamic loads for a floating wedge with g ¼ 30�. On (b) diamonds denote the lower limit of reliability of
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more accurate models were developed (Battistin and Iafrati, 2004), even the very simple models are rather appropriate

when attention is mainly devoted to the hydrodynamic loads, since the pressure inside the thin jet layer is about zero.

This is why in the following the numerical model described in Battistin and Iafrati (2003) is adopted to compute the

unsteady flow generated by the water entry of a wedge initially floating on the free surface. Simulations are performed

for two different deadrise angles, g ¼ 30� and g ¼ 60�. For both cases several simulations are performed for different

grid refinements. The discretization of the free surface is started at the intersection point and the panel size is

progressively increased while moving toward the far field. In the following, each numerical simulation is characterized

in terms of the initial length A0 of the first free surface panel attached to the body. Reduction of this parameter makes

the vertical velocity at the first panel larger and the early stage, during which the solution is not reliable, shorter. The

numerical simulations, which are carried out for constant entry velocity V0 ¼ 1, last until the vertical displacement of

the wedge apex is twice the initial apex submergence.

The hydrodynamic loads provided by the numerical simulations for g ¼ 60�, are shown, in nondimensional form, in

Fig. 5. For this case three numerical simulations are carried out by using three different panel sizes obtained by halving

twice the value used for the coarsest case, which is A0=h0 ¼ 0:018042725. Fig. 5(a) shows that the three curves overlap
very well, aside from the very early part. For the latter, a close-up view is depicted in Fig. 5(b), where marks denote the

points starting from which the time histories can be considered reliable. The same comparison is established in Fig. 6

for the wedge with g ¼ 30�. For this set of calculations the coarsest grid A0=h0 is 20 times larger than that used for the
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Table 1

Coefficients of the expansion (39) found through least-squares approximations of the numerical data

Value ðg ¼ 30�Þ Error % ðg ¼ 30�Þ Value ðg ¼ 60�Þ Error % ðg ¼ 60�Þ

a �15.4897 0.0672 2.35994 0.0779

b 10.8574 0.0207 �2.03773 0.3513

c 12.8762 0.0906 1.13076 0.6304

d 14.4686 0.0633 0.72610 0.2722

Least-squares interpolation has been established in the range t=h0 ¼ ð0:0004; 0:5Þ for the case g ¼ 30� and t=h0 ¼ ð0:005; 0:5Þ for the
case g ¼ 60�.

Table 2

Results provided by least-squares interpolation on a larger time interval t=h0 ¼ ð0:0004; 2Þ for the case g ¼ 30� and t=h0 ¼ ð0:005; 2Þ for
the case g ¼ 60

Value ðg ¼ 30�Þ Error % ðg ¼ 30�Þ Value ðg ¼ 60�Þ Error % ðg ¼ 60�Þ

a �16.5367 0.0403 2.32808 0.0709

b 11.0743 0.0147 �1.92133 0.2764

c 14.0958 0.0453 1.02564 0.4157

d 13.4999 0.0121 0.744796 0.0770
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finest one. The singularity is much more pronounced in this case, which makes the duration of the initial stage much

shorter with respect to that for g ¼ 60�.

The reliable parts of the force histories can be used to derive, with the help of the least-squares approximation, the

coefficients in expansion (36) once the expansion is presented in the form

F ðtÞ�aþ bt
3s0�2
2�s0 þ ct

2s0�1
2�s0 þ dt. (39)

The last term in (39) has been introduced to account for the linear behaviour that characterizes the self-similar solution

of the wedge entry problem. In fact, in both cases shown above, the linear trend is progressively approached when the

body displacement V0t exceeds one third of the initial submergence h0 .

The coefficients of Eq. (39) evaluated through the least-squares interpolation of the numerical results are reported in

Tables 1 and 2 along with the corresponding errors in percent. The least-squares fit established on different portions of

the time history gives differences in the estimated coefficients which are rather large for the case g ¼ 30� (up to 10%)

while they are much less for the case g ¼ 60�. This is caused by the unbounded values that the second term in (39) takes

as t! 0 for g ¼ 30�. For g ¼ 30�, the coefficient d of the linear term provided by the least-squares fit is not far from the

value predicted by Zhao and Faltinsen (1993) on the basis of the similarity solution, which is 14:139 (Tables 1 and 2).

Evaluation of the time independent term in (39) directly from Eq. (37) provides

aðg ¼ 30�Þ ¼ �10:5038; aðg ¼ 60�Þ ¼ 2:38057.

These formulae show that, while the value of a in (39) for g ¼ 60� is rather close to the estimate provided by the least-

squares fit, that for g ¼ 30� is significantly different. This can be attributed to the divergent behaviour of the second

term in expansion (39), which is of higher order than the first one for g445�. It is possible to obtain a better agreement

between the analytical and numerical results for g ¼ 30� by performing numerical calculations with finer discretization.

If so, the region along which the least-squares fitting is established will be extended towards t ¼ 0. However, the

discretization adopted in the present numerical calculation is already very refined and a further refinement would be

very expensive.

By using the coefficient b provided by the least-squares fit for g ¼ 30�, through Eqs. (38) and (32), the constant CE of

the eigensolution can be evaluated as CE ¼ �0:888. This value differs from the value CE ¼ �0:6795 derived from the

solution of the inner problem in Iafrati and Korobkin (2004). The understanding of reasons for this disagreement needs

a deeper investigation.
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8. Discussion

The analysis presented above can be summarized as follows: (i) the leading order terms governing the initial

asymptotics of the hydrodynamic loads acting on a floating flared body, which suddenly starts to move, have been

recovered; (ii) the inner solution has been found to be responsible for the first two time-dependent terms appearing

in the small time expansion of the hydrodynamic loads; (iii) in contrast to classical small time expansions, these

time-dependent terms have non-integer powers of time; (iv) for deadrise angles smaller than 45�, negative powers

of time appear which are responsible for the unbounded behaviour of the hydrodynamic loads as t! 0; (v) for dead-

rise angle at the water line larger than 45� the constant term representing the hydrodynamic load at t! 0 has been

derived.

These results can be used in numerical calculations of the free motion of floating bodies to overcome difficulties with

accurate evaluation of the hydrodynamic loads during the early stage of the simulations. These loads, as discussed in

Vinje (1994), may play an important role in prediction of the body motion for large time.

The idea is to perform a preliminary numerical simulation for the floating body by assuming a constant entry

velocity. The dynamics of the body motion are not computed at this step. The numerical simulation has to be performed

for an interval of time large enough to get a reasonably good estimate of the coefficients in Eq. (39) through least-

squares fit of the predicted hydrodynamic loads. Numerical simulations with finer resolutions can be done with the aim

of evaluating the reliable extent of the time history, which has to be used for the fitting.

Once the coefficients a; b; c and d in (39) have been evaluated, we present the hydrodynamic force acting on the free

moving body just after the impact as

F ðtÞ ¼ €hMa þ a _h
2
þ b _h

2
h
3s0�2
2�s0 þ c _h

2
h
2s0�1
2�s0 þ d _h

2
h, (40)

where the added mass Ma is evaluated analytically or numerically for the initial shape of the submerged part of the

body. Eq. (40) follows from comparison of Eqs. (39) and (35). Note that the coefficients in (40) were calculated from the

solution of the auxiliary problem of the body motion at constant speed, _h ¼ 1, in non-dimensional variables.

Free body motion after impact is governed in the non-dimensional variables by the equation

Mb
€h ¼ �F ðtÞ, (41)

where the hydrodynamic force F ðtÞ is given by (40), Mb ¼ m=R0L2, m is the body mass per unit length, R0 is the water
density and L is the half-width of the body at the water level. The differential equation (41) is solved together with the

initial conditions

hð0Þ ¼ 0; _hð0Þ ¼ 1. (42)

Eq. (41) can be integrated once by using the substitution

_h ¼ exp½UðhÞ�; Uð0Þ ¼ 0. (43)

We find

UðhÞ ¼ �
1

Mb þMa

ahþ b
2� s0
2s0

h
2s0
2�s0 þ c

2� s0
1þ s0

h
1þs0
2�s0 þ

1

2
dh2

� 	
. (44)

Finally, we calculate the function t ¼ tðhÞ as

t ¼

Z h

0

exp½�UðxÞ�dx. (45)

During the early stage of the body displacement hðtÞ after the impact, its velocity _hðtÞ and acceleration €hðtÞ, as well as
the hydrodynamic force F ðtÞ, are obtained by using Eqs. (40), (41) and (43)–(45). Calculations based on this analytic

solution are used for small penetration depths until the numerical simulation of the auxiliary problem becomes

reliable. Starting from this depth, the analytic solution is replaced by the numerical solution provided by an unsteady

solver. As an example, such calculations are performed for both g ¼ 30� and g ¼ 60� for two different masses of the

impacting body, Mb ¼ 10 and Mb ¼ 100. Calculations last until the body displacement is one half of the initial apex

submergence. Results, shown in Fig. 7, are compared with the corresponding time histories for the constant entry

velocity case, which is the limit as Mb !1. The important role played by the mass of the impacting body is clearly

highlighted.
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Before closing this section, it is worth remarking that similar calculations could be done in order to investigate the

role played by the gravity term, thus providing an a posteriori verification of the initial assumption.
9. Conclusions

The small time asymptotics of the hydrodynamic loads generated after the sudden vertical motion of initially floating

bodies has been investigated. In this respect, it has been shown that a very important role is played by the details of the

body shape at the intersection with the water line. It has been found that the details of the flow about the intersection

points govern the leading terms in the small time expansion of the loads. In particular, in contrast to the common

understanding of expansions, it has been shown that the inner solution is directly responsible for non-integer powers of

time, which only depend on the deadrise angle at the water line. Furthermore, for deadrise angle smaller than 45�, the

leading term has a negative power in time and is responsible for unbounded loads as t! 0. For deadrise angles larger

than 45�, the hydrodynamic load as t! 0 is found to be bounded and the asymptotic value for t! 0 has been

analytically derived. The theoretical value has been found to be in rather good agreement with that predicted by

interpolation of the fully nonlinear numerical simulations.

Some physical intuitive arguments can be helpful in explaining a reason for the different nature of the initial solution

depending on the deadrise angle of the body at the waterline. When the body deadrise angle is large enough, the liquid

free surface is more able to be deformed, owing to the floating body impact. Hence, it is easier for the liquid to escape

from the impact region and to develop the jets which contribute to evacuating the energy from the liquid surrounding the

impulsively moving body. This implies a reduction of the hydrodynamic loads shortly after the impact. On the contrary,

for relatively small deadrise angles, the part of the floating body which is initially above the water surface, restricts more

strongly the free surface motion and the outflow of the liquid from the impact region surrounding the wetted part of the

body. Roughly speaking, for small deadrise angles the water is trapped in the impact region and is much less free to flow

toward the free surface. It is worth remarking that the non-integer powers in the initial asymptotics of the loads come

from the inner region. This means that a special shape of the floating body at the waterline may help the liquid to escape

from the impact region, thus allowing a reduction of the hydrodynamic loads. A practical conclusion from this

observation can be formulated as follows: the deadrise angle of a floating body along its waterline must be (locally) as

large as possible, in order to reduce the hydrodynamic loads caused by impulsive motion of the body.
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